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Abstract. Neutron powder diffraction results on the tetragonal–orthorhombic and orthorhombic–
monoclinic structural phase transitions of tungsten oxide are reported. The observed first-order
transition fromP4/ncc to Pnma at 980 K to 1200 K hides the transition from the higher-
temperature phaseP4/nmm (viaCmca) toPnma. At 623(24)K, Pnma transforms via octahedral
rotations in a tricritical transition toP21/n. The structural characteristics and thermodynamic
properties of the order parameters are described in detail. The evolution of the WO6 octahedra and
the atomic positions is documented using such parameters as the octahedral elongation, octahedral
variance and the off-centre displacement vectors for the tungsten atoms. It is shown that the phase
transitions can be adequately described within the framework of a decoupled mean-field Landau
theory.

1. Introduction

The structure of tungsten trioxide is perovskite-like, with corner-sharing WO6 octahedra.
Between absolute zero and 230 K the symmetry is monoclinic, with space groupPc [1–3]. At
higher temperatures up to room temperature the structure is triclinic,P 1̄ [4,5]. Between room
temperature and 600 K WO3 is monoclinic, of symmetryP21/n [6,7]. Up to near 1000 K its
structure isPmnb (Pnma) [8]. Above this temperature the symmetry isP4/ncc [9], and at
1170 K it becomesP4/nmm [10]. The two tetragonal phases were reinvestigated by Locherer
et al [9] using neutron diffraction techniques, because better data were needed to determine
the order parameter.

The technological importance of WO3 in the fields of electrochromics [11–13], super-
conductivity [14, 15] and nanotechnology [16] as well as the study of (bi)polarons [3, 17]
makes this material one of the best researched transition metal oxides. Despite the great effort
in the characterization of WO3 a detailed determination of the structural properties of the phase
transitions is still missing, mainly because much of the early work was undertaken using x-
ray powder diffraction techniques. A recently discovered tetragonal modification of reduced
WO3 is believed to produce a phase which exhibits sheet superconductivity [14, 15], and has
caused a resurgence of interest in the structural properties of WO3. In this paper we report
the detailed atomic motion of the atomic positions during phase transitions as determined by
neutron diffraction methods.

0953-8984/99/356737+20$30.00 © 1999 IOP Publishing Ltd 6737



6738 K R Locherer et al

2. Experiments

Material for the powder diffraction experiments was obtained in two steps. A platinum crucible
was filled with 99%+ pure WO3 powder of 20µm grain size (Aldrich, catalogue No 23278-5)
and placed in a furnace at 1073 K for 100 hours [8]. The temperature was then raised to 1723 K
for about two hours. The timescale at this point is critical, as WO3 sublimates very rapidly at
these temperatures, and if one leaves the material for too long nothing is left in the crucible.
The furnace is then turned off and left to cool to room temperature. From the surface of the
recrystallized mass, crystals with plate-like habit (parallel to 001) were recovered. These were
then ground in acetone.

A series of neutron diffraction patterns were taken between room temperature and 1210 K
at the C2 diffractometer at Chalk River Laboratories (see figures 1 and 2). The wavelength was
λ = 2.3717 Å. The neutrons were filtered using pyrolytic graphite to reduceλ/2 contamination.

Lattice parameters were extracted using the Pawley method [18] in FULLPROF [19]
(tables 1 and 2). The results for temperatures above 989 K are reported elsewhere [9].
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Figure 1. Observed, calculated and difference patterns of the monoclinic phase at 546 K. The
reliability factors areR = 4.55,Rwp = 6.01 andχ2 = 0.93.

Table 1. The lattice parameters for the monoclinic phase at temperatures between 393(3) K and
653(3) K.

Temperature (K) a (Å) b (Å) c (Å) β

389(3) 7.3099(9) 7.5489(3) 7.7019(3) 90.827(3)
491(3) 7.3183(4) 7.5565(3) 7.7135(4) 90.721(4)
546(3) 7.3243(3) 7.5610(3) 7.7220(3) 90.638(3)
601(3) 7.3296(3) 7.5681(3) 7.7337(3) 90.459(3)
653(3) 7.3395(4) 7.5775(3) 7.7475(3) 90.059(7)
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Figure 2. Observed, calculated and difference patterns of the orthorhombic phase at 908 K. The
reliability factors areR = 6.18,Rwp = 9.04 andχ2 = 2.06.

Table 2. The lattice parameters refined for the orthorhombic phase at temperatures between
704(3) K and 989(3) K.

Temperature (K) a (Å) b (Å) c (Å)

704(3) 7.3453(4) 7.5776(4) 7.7521(4)

755(3) 7.3519(4) 7.5778(4) 7.7573(4)

806(3) 7.3602(4) 7.5776(5) 7.7640(5)

857(3) 7.3691(4) 7.5765(4) 7.7717(4)

908(3) 7.3783(4) 7.5726(4) 7.7798(5)

918(3) 7.3801(5) 7.5720(5) 7.7819(5)

928(3) 7.3818(5) 7.5714(5) 7.7834(5)

939(3) 7.3840(5) 7.5703(5) 7.7862(6)

949(3) 7.3866(5) 7.5694(5) 7.7883(5)

959(3) 7.3889(5) 7.5685(5) 7.7904(5)

969(3) 7.3909(6) 7.5665(6) 7.7929(7)

979(3) 7.3935(4) 7.5651(5) 7.7956(5)

989(3) 7.3963(5) 7.5629(5) 7.7985(5)

3. The tetragonal–orthorhombic transition

3.1. The sub–supergroup relation

Pnma is not a subgroup ofP4/ncc. However, althoughPnma is not a maximal subgroup
of P4/nmm the two can be linked via an intermediate space group. This is illustrated in
figures 3 and 4.
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Figure 3. The super–subgroup relationships for the phases of WO3. The definition of the special
points is given in figure 4.
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Figure 4. The Brillouin zone for tetragonal P:0 = (0, 0, 0), M = ( 1
2 ,

1
2 , 0), Z = (0, 0, 1
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A = ( 1

2 ,
1
2 ,

1
2), R = (0, 1

2 ,
1
2), X = (0, 1

2 , 0). The tetragonal–tetragonal transitionP4/nmm to
P4/ncc viaP42ncm correlates with the Z and0 points respectively. The tetragonal–orthorhombic
transitionsP4/nmm toCmca is also associated with the Z point. After Bradley and Cracknell [34].

The transition proceeds via the transformation matrix [20]

TZ =
 1 1 0 0

1̄ 1 0 1
2

0 0 2 0

 (1)

toCmca and then via

TY =
 0 1 0 1

4

1 0 0 1
4

0 0 1̄ 0

 (2)

to Pnma. The splitting of the Wyckoff positions is recorded in table 3.

3.2. The spontaneous strain

The sequence shows that the transition between the tetragonal and orthorhombic phase in WO3

does not take place betweenP4/ncc andPnma, but rather betweenP4/nmm andPnma, as
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Table 3. Atomic coordinates and their correlations for the phasesP4/nmm, Cmca andPnma.
Atomic positions taken from Salje [8] and Lochereret al [9].

Super- Wyckoff Atom Sub- Wyckoff Atom (new label)
group position and coordinates group position and coordinates

P4/nmm 2c W1 0.250 0.250 0.066 Cmca 8f W1 0.000 0.779 0.031
2c O1 0.250 0.250 0.506 8f O1 0.000 0.754 0.262
4d O2 0.000 0.000 0.000 8c O2 0.250 0.250 0.000

4a O3 0.000 0.000 0.000
4b O4 0.500 0.000 0.000

Cmca 8f W1 0.000 0.779 0.031 Pnma 4c W1 0.029 0.250−0.031
4c W2 0.030 0.250 0.468

8f O1 0.000 0.754 0.262 4c O1 0.004 0.250 0.738
4c O2 0.015 0.250 0.224

8c O2 0.250 0.250 0.000 4a O3 0.000 0.000 0.000
4b O4 0.000 0.000 0.500

4a O3 0.000 0.000 0.000 4c O5 0.278 0.250 0.529
4b O4 0.500 0.000 0.000 4c O6 0.269 0.250−0.027

observed by Salje [8]. Instead of extrapolating the lattice parameters from the lower tetragonal
phase into the orthorhombic phase to work out the strain the higher tetragonal phase has to be
used. This is supported by the fact that the average lattice parameter in the orthorhombic phase
aave = (ao + bo)/2 can be extrapolated to higher temperatures and can be made to virtually
coincide with thea-axis parameter ofP4/nmm (figure 5).
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Figure 5. The lattice parameters extracted from neutron powder diffraction. The values above
989 K are reported in [9].

There is a small discrepancy between the extrapolations, which might be of significance.
Linear fits toaave = (ao +bo)/2 give the relationaave = [7.416(1)+ 6.5(1)× 10−5 K−1 T ] Å,
while a linear fit to the tetragonal lattice parameters between 1170 K and 1210 K produces
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at = [7.411(2) + 6.4(1)× 10−5 K−1 T ] Å. There is an offset between the fits ofaave − at ≈
0.005 Å. This offset is larger than the error. It might be attributed to a non-symmetry-breaking
transition somewhere between 980 K and 1170 K.

Ignoring the small discrepancy, either extrapolation can be used to obtain the orthorhombic
spontaneous strains. The spontaneous strainse11 and e22 are nearly symmetrical about
zero (figure 6), which implies that virtually all the strain relates to the symmetry-breaking
spontaneous strain(e11 − e22)/2, whereas the non-symmetry-breaking spontaneous strain
(e11 + e22)/2 is practically zero. Figure 7 shows a plot ofe11 versuse22. The two strains scale
linearly.
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Figure 6. The various strains versus temperature for WO3. The inset shows details of the strains
e11, esym ande(a−b)/(a+b). Errors are of the size of the plot symbols, except fore33 (see the text).

To obtain thec-axis spontaneous strain of the orthorhombic phase the tetragonalc

lattice parameter was extrapolated to lower temperatures. As for the basal plane, only five
data points could be used. The linear fit between 1170 K and 1210 K gave the result
ct = [7.71(2) + 1.25(1)× 10−4 K−1 T ] Å. The errors are very large. Hence the reliability of
the derived strain is limited. The straine33 is plotted in figure 6. It levels off towards lower
temperatures and almost reverses its slope. This is likely to be caused by the error in the
extrapolation of the lattice parameter.

Plottinge33 versusesym (figure 8) shows that the two strains scale linearly, which implies
that the symmetry-breaking strain is proportional to the square of the order parameter. Closer
examination reveals that the extrapolation in figure 8 does not pass through the origin. This
point will be discussed further on.

An attempt was made to fit the strains using a Landau-type first-order 2–4–6 potential (see
e.g. Salje [21]),

L(Q) = 1

2
A(T − Tc)Q2 +

1

4
BQ4 +

1

6
CQ6. (3)
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Figure 8. Correlation ofe33 with the symmetry-breaking spontaneous strainesym. The solid line
is a linear fit forced through the origin, while the dotted line is unconstrained.

The equilibrium transition temperatureTT r is

TT r = Tc +
3

16

B2

AC
. (4)
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The order parameter jumps fromQ = 0 toQ = Q0 atTT r , whereQ0 is

Q0 = ±
[
−4A(TT r − Tc)

B

]1/2

. (5)

BelowTT r the order parameter is described by

Q2 = 2

3
Q2

0

{
1 +

[
1− 3

4

(
T − Tc
TT r − Tc

)]1/2
}
. (6)

The strain was linearized such that

y = 4

3

[
1−

(
3

2

esym

esym,0
− 1

)2
]

(7)

x = T . (8)

This is plotted in figure 9. Sincee0 has to be specified by choosingTtr this opens up the
possibility that the ‘real’Ttr is covered up by the phaseP4/ncc, rendering the linearization
wrong. Nevertheless the transformed spontaneous strain scales linearly with temperature
within error, supporting the chosen model. The linear fity = mx+c between 700 K and 989 K
returns the parametersc = −3.50(8) andm = 4.51(9) × 10−3 K−1 at a correlation factor of
R = 0.997 and standard deviation ofσ = 0.25. This leads toTc = −c/m = 780(21) K.
In checking for self-consistency it is found that the fit givesTtr = (1− c)/m = 995(31) K,
which is close to the original inputTtr = 989 K. The same procedure was applied to a 2–3–4
potential,

L(Q) = 1

2
A(T − Tc)Q2 +

1

3
BQ3 +

1

4
CQ4. (9)
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Figure 9. Temperature dependence of the linearized strain for a 2–4–6 potential. A plot of the
residual of the fit is shown at the bottom of the graph.



Phase transitions in tungsten trioxide at high temperatures 6745

This gives an equilibrium transition temperature of

TT r = Tc +
2

9

B2

AC
. (10)

At TT r there will be a jump in the order parameter fromQ = 0 toQ = Q0, where

Q0 = ±2

3

B

C
. (11)

For temperatures belowTT r the variation of the order parameter is

Q = 3

4
Q0

{
1 +

[
1− 8

9

(
T − Tc
TT r − Tc

)]1/2
}
. (12)

Again, the strain data were linearized according to

y = 9

8

[
1−

(
4

3

esym

esym,0
− 1

)2
]

(13)

x = T . (14)

This is plotted in figure 10. A linear fit now produces the valuesc = 0.10(3) and
m = 9.0(3) × 10−4 K−1 at a correlation factor ofR = 0.992 and a standard deviation of
σ = 0.57. Statistically the fit is not as good as the first. It is particularly noticeable from the
residual of the fit which shows a trend rather than equal scatter across zero. Hence this model
was discarded.
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Figure 10. Temperature dependence of the linearized strain for a 2–3–4 potential. A plot of the
residual of the fit is shown below at the bottom of the graph.

4. Discussion

4.1. The phenomenological model

In the previous section an attempt was made to fit the symmetry-breaking strain with a simple
one-order-parameter model. This is inadequate. The transition will be influenced by other
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phase transitions at higher temperatures. The hypothetical transition from the prototypePm3̄m
perovskite-type phase toP4/nmm correlates with a soft mode at the M point of the Brillouin
zone (figure 11) [8]. The transition causes a doubling of the unit cell according to [20]

TM =
 1 1 0 1

2

1̄ 1 0 0
0 0 1 0

 (15)

and produces a three-component order parameter. However, only one component is finite.
This order parameter is associated with the puckering of the tungsten atoms in the basal
plane. If the transition is continuous, as allowed by theory, the transition must be at a very
high temperature, or may not occur at all, since the displacement of these atoms appears not to
change significantly over the observed temperature range. This was also noted by Kehlet al[10]
by considering the difference between thec- and thea-axis, which remains significant up to
sublimation temperatures. Should the transition be of first order the transition temperature
might be significantly reduced. In either caseTc appears to be at least as high as 1200 K.
The order parameter,Q1, can thus be taken as effectively constant with temperature over the
range relevant to the lower WO3 phases, and does not play a part in the lower-temperature
transitions. That leaves two order parameters associated with theP4/nmm-to-Cmca and the
Cmca-to-Pnma transitions,Q2 andQ3 respectively. To account for the observed behaviour,
coupling between order parameters has to be taken into account. Salje and Devarajan [22]
have discussed strain-induced order parameter coupling. The free energy becomes

G(Q2,Q3) = 1

2
A2Q

2
2 +

1

4
B2Q

4
2 +

1

6
C2Q

6
2 +

= 1

2
A3Q

2
3 +

1

4
B3Q

4
3 +

1

6
C3Q

6
3 + e2Q

2
2 + e3Q

2
3 + f e2 (16)
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Figure 11. The Brillouin zone for cubic P:0(000), X = (0, 1
2 , 0), M = ( 1

2 ,
1
2 , 0), R= ( 1

2 ,
1
2 ,

1
2).

The hypothetical transition fromPm3̄m toP4/nmm is associated with the M point. After Bradley
and Cracknell [34].
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where both order parameters couple biquadratically to the strains. Minimization with respect
to stress leads to

e = −d2Q
2
2 + d3Q

2
3

2f
. (17)

Thus theB-parameter in the Landau expression is renormalized such that

G = 1

2
A2Q

2
2 +

1

4

(
B2 − e

2
2

f

)
Q4

2 +
1

6
C2Q

6
2

+
1

2
A3Q

2
3 +

1

4

(
B3− e

2
3

f

)
Q4

3 +
1

6
C3Q

6
3−

e2e3

2f
Q2

2Q
2
3. (18)

Minimization of this equation with respect to the order parameters leads to the four solutions

O: Q2 = Q3 = 0

I: Q2 = 0,Q3 = 1

2C3
(−B3± (B2

3 − 4A3C3)
1/2)

II: Q3 = 0,Q2 = 1

2C2
(−B2 ± (B2

2 − 4A2C2)
1/2)

III: Q2 6= 0,Q3 6= 0.

(19)

This introduces seven unique topologies for the order parameters, depending on the various
constants in the free-energy expansion, as discussed in Salje and Devarajan [22]. The observed
sequence in this study is O–O′–II–III, where O′ represents the phase withQ1 6= 0. The
paraelastic phase with all order parameters at zero changes in thePm3̄m-to-P4/nmm transition
to a phase withQ1 6= 0 (O′). At a lower temperature the phase becomes a mixture of all
three order parameters through the transition toCmca, with bothQ1 6= 0 andQ2 6= 0.
Finally, the transition toPnma creates a phase where all three order parameters are finite,
Q1,Q2,Q3 6= 0. The observation of this particular sequence suggests that the coupling
between all the order parameters is small [22], which explains why a decoupled order parameter
model can successfully be applied in this study.

4.2. The microscopic transition mechanism

The change fromP4/nmm to Cmca proceeds through a soft mode at the Z point of the
Brillouin zone (figure 12). The order parameterQ2 correlates with a zigzag displacement of
the tungsten atoms along [100] in the basal plane of the orthorhombic cell, away from the centre
of the octahedra (figure 13). The displacement is in opposite directions for layers parallel to
(001) atz = 0 andz = 0.5, causing the doubling of the unit cell inc. In addition, there is
a displacement of the apex oxygens along the same directions. This does not lead to a tilt
of the octahedra, since the basal oxygens do not move. It is thus a further distortion of the
octahedra. The magnitude of the displacement of the atoms is not known since the phase is not
observed. However, the fractional coordinates of the orthorhombic phasePnma were used
to construct the hypothetical structure. Using this hypothetical structure the magnitude of the
displacement of the tungsten atoms is similar to the puckering in the tetragonal phase. While
the displacement isz/2c = 0.033 inP4/nmm, it is x/a = 0.029 inCmca. The oxygens move
by only a very small amount,x/a = 0.004 (the standard deviation of the oxygen positions is
0.01; cf. Salje [8]). The combination of the tungsten and oxygen movements change the bond
angle between the apex oxygens and the tungsten from 180◦ to 167◦.
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1
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2 ,
1
2 ,

1
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2 , 0), R = (0, 1
2 ,

1
2). The orthorhombic–orthorhombic

transitionCmca to Pnma is associated with the Y point. After Bradley and Cracknell [34].

A measure of the distortion of the octahedra is given by the mean octahedral elongation
and the octahedral angle variance [23]

〈λoct 〉 = 1

6

6∑
i=0

(li/ l0)
2 (20)

σ 2
oct =

1

11

12∑
i=0

(θi − 90◦)2 (21)

where li are the centre-to-apex distances andθi are the octahedral angles of the strained
octahedron, whilel0 is the centre-to-apex distance in a perfect octahedron. Thus here the
octahedral elongation corresponds to〈λoct 〉 = 1.027, while the octahedral angle variance is
σoct = 8.43◦. This re-emphasizes that the distortion of the octahedra has increased signif-
icantly. The symmetry of the octahedra changes from 4/mmm to 1.

The transition fromCmca to Pnma is associated with the Y point of the Brillouin zone
(figure 12) and is non-ferroic, as there is no change in the point group. The order parameterQ3

causes additional puckering in the basal plane. There are three processes associated with this
transition. Firstly, the puckering of the tungsten atoms in the planes parallel to (100) atx = 0.25
andx = 0.75 ofCmca changes (figure 13). While the displacements of the atoms along [100]
were previously out of phase for consecutive layers of planes, these now become in phase, albeit
with slightly different magnitudes. This destroys the screw diads parallel to [001] at( 1

4, 0).
Secondly, the basal oxygen atoms, which lie on the special position( 1

4,
1
4, 0) are distorted in

the same directions as the neighbouring tungstens in [100]. Thirdly, the oxygens in the planes
parallel to (001) atz = 0.25 andz = 0.75 were previously aligned in the same directions within
the same plane. A further distortion of the oxygens completes puckering of the (020) planes.
The magnitude of the distortion for the tungsten atoms isx/a = 0.029 andx/a = 0.030. The
oxygens in the (004) planes are displaced byx/a = 0.004 andx/a = 0.015, while in the basal
plane it isx/a = 0.028 andx/a = 0.019. Again the transition does not produce a rotation
of octahedra. The octahedral elongation is〈λoct 〉 = 1.014 and〈λoct 〉 = 1.036, the octahedral
varianceσ = 6.63◦ andσ = 10.68◦, while the octahedral volumes areV = 8.57 Å3 and
V = 9.49 Å3. The bond length variance has increased toσbond = 0.06 Å andσbond = 0.10 Å
respectively. Thus the distortion of one octahedron has decreased at the expense of the other.
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Figure 13. The structural characteristics of three phases of WO3 are shown within the unit cell
of thePnma phase. The smaller spheres represent the tungsten atoms. TheP4/nmm phase (top
left) contains a smaller unit cell indicated by the full line. The coordinate system shown for the
z = 0 layer of theCmca phase shows the location of the origin of its unit cell. The puckering in the
(001) plane is preserved throughout the transition. On the other hand the transformation produces
additional puckering of similar magnitude in the (010) plane.

5. The monoclinic–orthorhombic transition

The monoclinic phase of WO3 was first refined by Tanisaki [6] using x-ray single-crystal
diffraction. The space group was given asP21/n, with lattice parametersa = 7.30 Å,
b = 7.53 Å, c = 7.68 Å andβ = 90.9◦. Further improvements on the refinement were
achieved by Loopstra and Boldrini [7] and Loopstra and Rietveld [24] using neutron powder
diffraction. The most recent refinement was done by Woodwardet al [5] for a mixture of



6750 K R Locherer et al

triclinic and monoclinic WO3, which led to minor changes of the structure. The transition
between the orthorhombic and monoclinic transition was classified continuous by Salje and
Viswanathan [25]. However, Brækken [26] comments that the monoclinic angle evolves
continuously up to near the transition and then shows a small discontinuity.

The variation of the angle between monoclinic domains, i.e. the angle of spontaneous
rotation, was first measured by Sawada and Danielson [27] using an optical microscope. The
tensor of the spontaneous strain for the orthorhombic to monoclinic transition is given by

esp =
 0 0 e

0 0 0
e 0 0

 . (22)

The strain is equal to the angle of spontaneous rotation. Since there is no doubling of the unit
cell in the transition it must be zone centred. Thus the strain is expected to be proportional to
the order parameter. The strain in an orthorhombic-to-monoclinic transition is given by

e13 ∝ cosβ. (23)

On the assumption that the monoclinic angle is half the spontaneous rotation plus 90◦,
β = θmono/2 + 90, a linear fit of

e2
13 ∝ Q2 = Q2

0(Tc − T ) (24)

was attempted. However, a better fit was achieved if the fourth power of the strain was used
instead. The fit parameters then give a transition temperature ofTc = 600(28) K (figure 14).

The variation of the monoclinic angle was also measured by Salje and Viswanathan [25]
using powder x-ray diffraction. The resulting strain is plotted in figure 15. Again, fitting
the fourth power of the strain produces a good fit, and gives the transition temperature
Tc = 712(72) K.
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Figure 14. The fourth power of the cosine of 90◦ plus half the optical extinction angle between
two monoclinic domains. Data from Sawada and Danielson [27].
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Figure 15. The fourth power of the cosine of the monoclinic angle versus temperature. Data taken
from Salje and Viswanathan [25].

The temperature dependence of the order parameter can be modelled within the framework
of Landau theory if the fourth-order term in the free-energy expansion is set to zero [21]:

L(Q) = 1

2
A(T − Tc)Q2 +

1

6
CQ6. (25)

BelowTc the order parameter is

Q =
[
A

C
(Tc − T )

]1/4

. (26)

Both data sets suggest that the transition is not second order but rather tricritical, while
Brækken’s [26] observation of a slight discontinuity suggests that the transition might be
weakly first order.

When comparing the values for the monoclinic angles directly between the two
publications two main discrepancies become apparent. Firstly, the transition temperature
differs by over a hundred degrees. Secondly, the magnitudes of the monoclinic angle disagree.

From the variation of the monoclinic angleβ refined in this study the strain was evaluated.
Fitting the fourth power of the spontaneous strain givesTc = 623(24) K (figure 16). This
seems to suggest that the transition temperature derived from the Sawada and Danielson [27]
data is correct within error.

This study also reconfirms that the transition is tricritical. The magnitude of the monoclinic
angle agrees with the Salje and Viswanathan [25] data (see table 1).

6. Discussion

The transition proceeds via the0 point of the Brillouin zone (figure 17) [20]. Specific heat
measurements reconfirm that the transition is tricritical [28].

In the monoclinic phase all the atoms lie on the [4e] general positions. The transition from
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Figure 16. The fourth power of the monoclinic straine13 versus temperature for the orthorhombic-
to-monoclinic transition in WO3. Errors are the size of the plot symbols.
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for the Pnma-to-P21/n transition is0. After
Bradley and Cracknell [34].

Pnma to P21/c is given by the matrix [20]

T0 =
 0 1 0 0

0 0 1 0
1 0 0 0

 . (27)

To move up toPnma two tungsten and four oxygen positions change to the special position
[4c]. Thus thex-coordinate becomes14. The remaining two oxygen positions change to the
special positions [4a] and [4b].

The monoclinic structure has been discussed by Woodwardet al [5] in terms of octahedral
tilting. Consider a pseudocubic subcell with parametersap 6= bp 6= cp, α 6= 90◦. According
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Figure 18. The crystal structure of thePnma
orthorhombic phase. The projection planes are from top
to bottom: (001), (010) and (100).

Figure 19. The crystal structure of theP21/nmonoclinic
phase. The projection planes are from top to bottom:
(001), (010) and (100).
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to Glazer [29], the simple octahedral tiltsa+b−c− lead to the structure for the corresponding
monoclinic cell 2ap × 2bp × 2cp of A21/m, or P21/m. However, this does not take into
account the displacements of the tungsten atoms off the centre of the octahedra. If these are
included in the analysis the mirror inP21/m becomes the glide plane inP21/n. Thus the
observed structure is reproduced if both the octahedral tilting and the tungsten displacements
are taken into consideration. The orthorhombic and monoclinic structures are compared in
figures 18 and 19.

The orthorhombic structure is a result of severe distortions of the octahedra. The
monoclinic phase however has more regular octahedra. The octahedral elongation is〈λoct 〉 =
1.028 and〈λoct 〉 = 1.027 and the octahedral variance isσoct = 8.60◦ andσoct = 8.31◦. The
volumes areV = 9.34 Å3 andV = 9.26 Å3. The similarity of the octahedral variance for the
two octahedra in the monoclinic phase attests to the relaxation of the structure.

7. Conclusions

WO3 displays a wide range of phase transitions. Various distortion parameters are summarized
in table 4 for all known phases of WO3. The phase with the highest symmetry isP4/nmm.
This phase can be described by a soft mode at the M point of thePm3̄m Brillouin zone [8]. It

Table 4. The octahedral elongation and variance for the various phases of WO3. Also given are the
volume of the WO6 octahedraVB and the cuboctahedral volume of the MO12 polyhedraVA, where
M is not occupied. The data were calculated using the following sources: (a) Lochereret al [9],
(b) Aird et al[14], (c) Salje [8], (d) Loopstra and Rietveld [24], (e) Diehlet al[4], (f ) Woodward and
Sleight [2], The octahedral elongation and variance were calculated using the code VOLCAL [30].
The cuboctahedral volume was found using the relationVunit cell = Z(VA + VB) [31]. The
octahedral volume, tungsten displacement vector and its magnitude were calculated using the
code IVTON [32,33].

Tungsten
displacement

Phase 〈λoct 〉 σoct (deg) VB (Å3) VA (Å3) VA/VB vector (fraction) and magnitude (Å)

P4/nmm(a) 1.0190 6.82 9.220 46.102 5.0000 (0.0000, 0.0000,−0.0649) 0.255

P4/ncc(a) 1.0186 6.78 9.127 45.841 5.0227 (0.0000, 0.0000, 0.0318) 0.250

P 4̄21m
(b) 1.0607 13.49 8.586 44.388 5.1700 (0.0018, 0.0018,−0.0675) 0.262

Cmca(a) 1.0273 8.41 9.088 54.531 6.0003 (0.0000, 0.0290, 0.0270) 0.304

Pnma(c) 1.0138 6.66 8.568 45.295 5.2863 (0.0180, 0.0000, 0.0153) 0.181
1.0356 10.67 9.395 44.468 4.7329 (0.0190, 0.0000, 0.0350) 0.307

P21/c
(d) 1.0282 8.59 9.333 43.627 4.6745 (−0.0390, 0.0199,−0.0039) 0.311

1.0274 8.28 9.266 43.694 4.7155 (−0.0229, 0.0291, 0.0051) 0.310

P 1̄(e) 1.0253 7.75 9.265 43.476 4.6924 (0.0055, 0.0179, 0.0328) 0.290
1.0284 8.56 9.428 43.313 4.5941 (−0.0037, 0.0198,−0.0355) 0.309
1.0279 8.54 9.332 43.410 4.6520 (−0.0075, 0.0240, 0.0316) 0.311
1.0244 7.96 9.149 43.592 4.7645 (0.0002, 0.0262,−0.0274) 0.285

Pc
(f ) 1.0234 7.77 9.342 42.771 4.5784 (0.0074,−0.0287, 0.0317) 0.286

1.0292 8.72 9.286 42.826 4.6117 (−0.0029,−0.0147,−0.0405) 0.319
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causes antiferroelectric displacements of the tungsten atoms in〈001〉 directions, doubling the
unit cell to

√
2×√2×1 of the lattice parameters of the parent phase. This transition generates

the first order parameter, which can be taken as constant within the observed temperature
range. Furthermore a tricritical non-ferroic transition takes place to theP4/ncc phase near
1171 K, which is caused by a soft mode at the Z point of the Brillouin zone [9]. The transition
produces octahedral rotations described by a single tilt systema0a0c−. The unit cell is doubled
to
√

2× √2× 2. Near 1020 K a transition to orthorhombic symmetryPnma takes place.
However, the transition does not proceed fromP4/ncc. InsteadP4/nmm transforms to the
intermediate phaseCmca through a Z-point improper ferroelastic transition. A further order
parameter appears, describing the zigzag displacements of tungstens along [100]. The unit
cell has now the size 2×2×2. Cmca then transforms toPnma through a Y-point non-ferroic
transition, which affects the positions of both tungsten and oxygen atoms. Figure 20 shows a
hypothetical diagram of the high-temperature phases.

P4/nmm
P4/ncc

Pnma

T

G

11701020
Cmca

Figure 20. The hypothetical phase diagram for the higher-temperature phases of WO3. The trans-
ition proceeds along the curve of lowest Gibbs free energy with the phasesP4/nmm, P4/ncc and
Pnma.

Although the presence of three order parameters calls for a model with multiple order
parameters it was found that one order parameter is enough to model the strain. A further
transition takes place betweenPnma andP21/n. This tricritical proper ferroelastic transition
is characterized by a soft mode at the0 point of the Brillouin zone [8]. The mode causes tilting
of the coordination octahedra. The transition temperature was found to be near 623 K. Again
the transition is well described by a single order parameter.
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